z-logo
open-access-imgOpen Access
Supercongruences involving Euler polynomials
Author(s) -
Zhi-Hong Sun
Publication year - 2015
Publication title -
proceedings of the american mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.968
H-Index - 84
eISSN - 1088-6826
pISSN - 0002-9939
DOI - 10.1090/proc/13005
Subject(s) - mathematics , euler's formula , pure mathematics , algebra over a field , mathematical analysis
Let p > 3 p>3 be a prime, and let a a be a rational p p -adic integer. Let { E n ( x ) } \{E_n(x)\} denote the Euler polynomials given by 2 e x t e t + 1 = ∑ n = 0 ∞ E n ( x ) t n n ! \frac {2\text {e}^{xt}}{\text {e}^t+1}=\sum _{n=0}^{\infty }E_n(x)\frac {t^n}{n!} . In this paper we show that a m p ; ∑ k = 0 p − 1 ( a k ) ( − 1 − a k ) ≡ ( − 1 ) ⟨ a ⟩ p + ( a − ⟨ a ⟩ p ) ( p + a − ⟨ a ⟩ p ) E p − 3 ( − a ) ( mod p 3 ) , a m p ; ∑ k = 0 p − 1 ( a k ) ( − 2 ) k ≡ ( − 1 ) ⟨ a ⟩ p − ( a − ⟨ a ⟩ p ) E p − 2 ( − a ) ( mod p 2 ) for a ≢ 0 ( mod p ) , \begin{align*} &\sum _{k=0}^{p-1}\binom ak\binom {-1-a}k\equiv (-1)^{\langle a\rangle _p}+ (a-\langle a\rangle _p)(p+a-\langle a\rangle _p)E_{p-3}(-a)\pmod {p^3}, \\&\sum _{k=0}^{p-1}\binom ak(-2)^k\equiv (-1)^{\langle a\rangle _p}-(a-\langle a\rangle _p)E_{p-2}(-a) \pmod {p^2}\quad \text {for}\quad a\not \equiv 0\pmod p, \end{align*} where ⟨ a ⟩ p ∈ { 0 , 1 , … , p − 1 } \langle a\rangle _p\in \{0,1,\ldots ,p-1\} satisfying a ≡ ⟨ a ⟩ p ( mod p ) a\equiv \langle a\rangle _p\pmod p . Taking a = − 1 3 , − 1 4 , − 1 6 a=-\frac 13,-\frac 14,-\frac 16 in the first congruence, we solve some conjectures of Z. W. Sun. We also establish a congruence for ∑ k = 0 p − 1 k ( a k ) ( − 1 − a k ) \sum _{k=0}^{p-1}k\binom ak\binom {-1-a}k modulo p 3 p^3 .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom