Some nonexistence results for a semirelativistic Schrödinger equation with nongauge power type nonlinearity
Author(s) -
Takahisa Inui
Publication year - 2015
Publication title -
proceedings of the american mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.968
H-Index - 84
eISSN - 1088-6826
pISSN - 0002-9939
DOI - 10.1090/proc/12938
Subject(s) - nonlinear system , physics , type (biology) , power (physics) , nonlinear schrödinger equation , schrödinger's cat , mathematical physics , quantum mechanics , biology , ecology
We consider the following semirelativistic nonlinear Schrödinger equation (SNLS): { i ∂ t u ± ( m 2 − Δ ) 1 / 2 u = λ | u | p , a m p ; ( t , x ) ∈ [ 0 , T ) × R d , u ( 0 , x ) = u 0 ( x ) , a m p ; x ∈ R d , \begin{equation} \left \{ \begin {array}{ll} i\partial _t u \pm (m^2-\Delta )^{1/2} u = \lambda |u|^{p}, & (t,x)\in [0,T)\times \mathbb {R}^d, \\ u(0,x)=u_0(x), & x \in \mathbb {R}^d, \end{array} \right . \notag \end{equation} where m ≥ 0 m\geq 0 , λ ∈ C ∖ { 0 } \lambda \in \mathbb {C} \setminus \{ 0\} , d ∈ N d\in \mathbb {N} , T > 0 T>0 , and ∂ t = ∂ / ∂ t \partial _t=\partial /\partial t . Here ( m 2 − Δ ) 1 / 2 := F − 1 ( m 2 + | ξ | 2 ) 1 / 2 F (m^2-\Delta )^{1/2}:=\mathcal {F}^{-1} (m^2+|\xi |^2 )^{1/2} \mathcal {F} , where F \mathcal {F} denotes the Fourier transform. Fujiwara and Ozawa proved the nonexistence of global weak solutions to SNLS for some initial data in the case of d = 1 d=1 , m = 0 m=0 , and 1 > p ≤ 2 1>p\leq 2 by a test function method. In this paper, we extend their result to a more general setting: for example, m ≥ 0 m\geq 0 , d ∈ N d\in \mathbb {N} , or p > 1 p>1 . Moreover, we obtain the upper estimates of weak solutions to SNLS. The key to the proof is to choose an appropriate test function.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom