z-logo
open-access-imgOpen Access
Error estimates at low regularity of splitting schemes for NLS
Author(s) -
Alexander Ostermann,
Frédéric Rousset,
Katharina Schratz
Publication year - 2021
Publication title -
mathematics of computation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.95
H-Index - 103
eISSN - 1088-6842
pISSN - 0025-5718
DOI - 10.1090/mcom/3676
Subject(s) - algorithm , computer science , annotation , artificial intelligence
We study a filtered Lie splitting scheme for the cubic nonlinear Schrödinger equation. We establish error estimates at low regularity by using discrete Bourgain spaces. This allows us to handle data in H s H^s with 0 > s > 1 0>s>1 overcoming the standard stability restriction to smooth Sobolev spaces with index s > 1 / 2 s>1/2 . More precisely, we prove convergence rates of order τ s / 2 \tau ^{s/2} in L 2 L^2 at this level of regularity.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom