Base change and triple product 𝐿-series
Author(s) -
Ming-Lun Hsieh,
Shunsuke Yamana
Publication year - 2022
Publication title -
representation theory of the american mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.169
H-Index - 37
ISSN - 1088-4165
DOI - 10.1090/ert/602
Subject(s) - algorithm , artificial intelligence , annotation , computer science , database
Let π i \pi _i be an irreducible cuspidal automorphic representation of G L 2 \mathrm {GL}_2 with central character ω i \omega _i . When ω 1 ω 2 ω 3 \omega _1\omega _2\omega _3 is trivial, Atsushi Ichino proved a formula for the central value L ( 1 2 , π 1 × π 2 × π 3 ) L(\frac {1}{2}, \pi _1\times \pi _2\times \pi _3) of the triple product L L -series in terms of global trilinear forms. We will extend this formula to the case when ω 1 ω 2 ω 3 \omega _1\omega _2\omega _3 is a quadratic character, giving a non-vanishing criterion of a local trilinear form in terms of the central value of the gamma factor.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom