Low-Intensity Ultrasound Inhibits Apoptosis and Enhances Viability of Human Mesenchymal Stem Cells in Three-Dimensional Alginate Culture During Chondrogenic Differentiation
Author(s) -
Hyun Jung Lee,
Byung Hyune Choi,
ByoungHyun Min,
So Ra Park
Publication year - 2007
Publication title -
tissue engineering
Language(s) - English
Resource type - Journals
eISSN - 1557-8690
pISSN - 1076-3279
DOI - 10.1089/ten.2006.0346
Subject(s) - chondrogenesis , mesenchymal stem cell , viability assay , microbiology and biotechnology , apoptosis , chemistry , cartilage , stem cell , cell , biology , anatomy , biochemistry
Many studies have investigated optimal chondrogenic conditions, but only a few of them have addressed their effects on cell viability or the methods to enhance it. This study investigated the effect of low-intensity ultrasound (LIUS), a well-known chondrogenic inducer, on the viability of human mesenchymal stem cells (hMSCs) during chondrogenic differentiation in three-dimensional (3-D) alginate culture. The hMSCs/alginate layer was cultured in a chondrogenic defined medium and treated with transforming growth factor-beta1 (TGF-beta1) and/or LIUS for 2 weeks. Along with chondrogenic differentiation for 2 weeks, the 3-D alginate culture and TGF-beta1 treatment resulted in the decrease of cell viability, which appeared to be mediated by apoptosis. In contrast, co-treatment with LIUS clearly enhanced cell viability and inhibited apoptosis under the same conditions. The effect of LIUS on the apoptotic event was further demonstrated by changes in the expression of apoptosis/viability related genes of p53, bax, bcl-2, and PCNA. These results suggest that the LIUS treatment could be a valuable tool in cartilage tissue engineering using MSCs as it enhances cell viability and directs the chondrogenic differentiation process, its well-known activity.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom