z-logo
open-access-imgOpen Access
Prolonged Hypoxia Concomitant with Serum Deprivation Induces Massive Human Mesenchymal Stem Cell Death
Author(s) -
Esther Potier,
Elisabeth Ferreira,
Alain Meunier,
L. Sedel,
Delphine LogeartAvramoglou,
Hervé Petite
Publication year - 2007
Publication title -
tissue engineering
Language(s) - English
Resource type - Journals
eISSN - 1557-8690
pISSN - 1076-3279
DOI - 10.1089/ten.2006.0325
Subject(s) - mesenchymal stem cell , hypoxia (environmental) , concomitant , stem cell , medicine , biomedical engineering , microbiology and biotechnology , chemistry , biology , pathology , oxygen , organic chemistry
Mesenchymal stem cells (MSCs) have been proposed for the repair of damaged tissue including bone, cartilage, and heart tissue. Upon in vivo transplantation, the MSCs encounter an ischemic microenvironment characterized by reduced oxygen (O2) tension and nutrient deprivation that may jeopardize viability of the tissue construct. The aim of this study was to assess the effects of serum deprivation and hypoxia on the MSC survival rates in vitro. As expanded MSCs are transferred from plastic to a scaffold in most tissue engineering approaches, possibly inducing loss of survival signals from matrix attachments, the effects of a scaffold shift on the MSC survival rates were also assessed. Human MSCs were exposed for 48 hours to (i) a scaffold substrate shift, (ii) serum deprivation, and (iii) O2 deprivation. MSCs were also exposed to prolonged (up to 120 hours) hypoxia associated with serum deprivation. Cell death was assessed by Live/Dead staining and image analysis. The MSC death rates were not affected by the shift to scaffold or 48-hour hypoxia, but increased with fetal bovine serum (FBS) starvation, suggesting that between the two components of ischemia, nutrient deprivation is the stronger factor. Long-term hypoxia combined with serum deprivation resulted in the complete death of MSCs (99 +/- 1%), but this rate was reduced by half when MSCs were exposed to hypoxia in the presence of 10% FBS (51 +/- 31%). These results show that MSCs are sensitive to the concurrent serum and O2 deprivation to which they are exposed when transplanted in vivo, and call for the development of new transplantation methods.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom