Gene Therapy for Hemoglobinopathies
Author(s) -
Marina Cavazzana,
Fulvio Mavilio
Publication year - 2018
Publication title -
human gene therapy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.633
H-Index - 149
eISSN - 1557-7422
pISSN - 1043-0342
DOI - 10.1089/hum.2018.122
Subject(s) - genetic enhancement , viral vector , stem cell , thalassemia , biology , disease , gene , transplantation , vector (molecular biology) , hematopoietic stem cell transplantation , haematopoiesis , hematopoietic stem cell , limiting , medicine , computational biology , bioinformatics , immunology , genetics , recombinant dna , mechanical engineering , engineering
Gene therapy for β-thalassemia and sickle-cell disease is based on transplantation of genetically corrected, autologous hematopoietic stem cells. Preclinical and clinical studies have shown the safety and efficacy of this therapeutic approach, currently based on lentiviral vectors to transfer a β-globin gene under the transcriptional control of regulatory elements of the β-globin locus. Nevertheless, a number of factors are still limiting its efficacy, such as limited stem-cell dose and quality, suboptimal gene transfer efficiency and gene expression levels, and toxicity of myeloablative regimens. In addition, the cost and complexity of the current vector and cell manufacturing clearly limits its application to patients living in less favored countries, where hemoglobinopathies may reach endemic proportions. Gene-editing technology may provide a therapeutic alternative overcoming some of these limitations, though proving its safety and efficacy will most likely require extensive clinical investigation.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom