z-logo
open-access-imgOpen Access
Transgenerational CRISPR-Cas9 Activity Facilitates Multiplex Gene Editing in Allopolyploid Wheat
Author(s) -
Wei Wang,
Qianli Pan,
Fei He,
Alina Akhunova,
Shiaoman Chao,
Harold N. Trick,
Eduard Akhunov
Publication year - 2018
Publication title -
the crispr journal
Language(s) - English
Resource type - Journals
eISSN - 2573-1602
pISSN - 2573-1599
DOI - 10.1089/crispr.2017.0010
Subject(s) - crispr , genome editing , biology , cas9 , gene , genetics , multiplex , guide rna , computational biology , subgenomic mrna
The CRISPR-Cas9-based multiplexed gene editing (MGE) provides a powerful method to modify multiple genomic regions simultaneously controlling different agronomic traits in crops. We applied the MGE construct built by combining the tandemly arrayed tRNA-gRNA units to generate heritable mutations in the TaGW2 , TaLpx-1 , and TaMLO genes of hexaploid wheat. The knockout mutations generated by this construct in all three homoeologous copies of one of the target genes, TaGW2 , resulted in a substantial increase in seed size and thousand grain weight. We showed that the non-modified gRNA targets in the early generation plants can be edited by CRISPR-Cas9 in the following generations. Our results demonstrate that transgenerational gene editing activity can serve as the source of novel variation in the progeny of CRISPR-Cas9-expressing plants and suggest that the Cas9-inducible trait transfer for crop improvement can be achieved by crossing the plants expressing the gene editing constructs with the lines of interest.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom