Improving Bloom Filter Performance on Sequence Data Using k-mer Bloom Filters
Author(s) -
David Pellow,
Darya Filippova,
Carl Kingsford
Publication year - 2016
Publication title -
journal of computational biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.585
H-Index - 95
eISSN - 1557-8666
pISSN - 1066-5277
DOI - 10.1089/cmb.2016.0155
Subject(s) - bloom filter , k mer , leverage (statistics) , memory footprint , sequence (biology) , set (abstract data type) , computer science , data structure , bloom , metagenomics , false positive rate , enumeration , filter (signal processing) , algorithm , biology , data mining , dna sequencing , mathematics , combinatorics , artificial intelligence , genetics , ecology , gene , programming language , operating system , dna , computer vision
Using a sequence's k-mer content rather than the full sequence directly has enabled significant performance improvements in several sequencing applications, such as metagenomic species identification, estimation of transcript abundances, and alignment-free comparison of sequencing data. As k-mer sets often reach hundreds of millions of elements, traditional data structures are often impractical for k-mer set storage, and Bloom filters (BFs) and their variants are used instead. BFs reduce the memory footprint required to store millions of k-mers while allowing for fast set containment queries, at the cost of a low false positive rate (FPR). We show that, because k-mers are derived from sequencing reads, the information about k-mer overlap in the original sequence can be used to reduce the FPR up to 30 × with little or no additional memory and with set containment queries that are only 1.3 - 1.6 times slower. Alternatively, we can leverage k-mer overlap information to store k-mer sets in about half the space while maintaining the original FPR. We consider several variants of such k-mer Bloom filters (kBFs), derive theoretical upper bounds for their FPR, and discuss their range of applications and limitations.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom