z-logo
open-access-imgOpen Access
Thiophenes on Mars: Biotic or Abiotic Origin?
Author(s) -
Jacob Heinz,
Dirk SchulzeMakuch
Publication year - 2020
Publication title -
astrobiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.234
H-Index - 90
eISSN - 1531-1074
pISSN - 1557-8070
DOI - 10.1089/ast.2019.2139
Subject(s) - mars exploration program , astrobiology , martian , diagenesis , abiotic component , organic matter , kerogen , geology , chemistry , earth science , geochemistry , paleontology , organic chemistry , source rock , biology , structural basin
The question whether organic compounds occur on Mars remained unanswered for decades. However, the recent discovery of various classes of organic matter in martian sediments by the Curiosity rover seems to strongly suggest that indigenous organic compounds exist on Mars. One intriguing group of detected organic compounds were thiophenes, which typically occur on Earth in kerogen, coal, and crude oil as well as in stromatolites and microfossils. Here we provide a brief synopsis of conceivable pathways for the generation and degradation of thiophenes on Mars. We show that the origin of thiophene derivatives can either be biotic or abiotic, for example, through sulfur incorporation in organic matter during early diagenesis. The potential of thiophenes to represent martian biomarkers is discussed as well as a correlation between abundances of thiophenes and sulfate-bearing minerals. Finally, this study provides suggestions for future investigations on Mars and in Earth-based laboratories to answer the question whether the martian thiophenes are of biological origin.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom