z-logo
open-access-imgOpen Access
Critical Assessment of Analytical Techniques in the Search for Biomarkers on Mars: A Mummified Microbial Mat from Antarctica as a Best-Case Scenario
Author(s) -
Yolanda Blanco,
Ignacio Gallardo-Carreño,
Marta RuizBermejo,
Fernando PuenteSánchez,
Erika Cavalcante-Silva,
Antonio Quesada,
O. PrietoBallesteros,
Vı́ctor Parro
Publication year - 2017
Publication title -
astrobiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.234
H-Index - 90
eISSN - 1531-1074
pISSN - 1557-8070
DOI - 10.1089/ast.2016.1467
Subject(s) - raman spectroscopy , hyperspectral imaging , mars exploration program , astrobiology , sample preparation , chemistry , environmental science , remote sensing , geology , biology , physics , chromatography , optics
The search for biomarkers of present or past life is one of the major challenges for in situ planetary exploration. Multiple constraints limit the performance and sensitivity of remote in situ instrumentation. In addition, the structure, chemical, and mineralogical composition of the sample may complicate the analysis and interpretation of the results. The aim of this work is to highlight the main constraints, performance, and complementarity of several techniques that have already been implemented or are planned to be implemented on Mars for detection of organic and molecular biomarkers on a best-case sample scenario. We analyzed a 1000-year-old desiccated and mummified microbial mat from Antarctica by Raman and IR (infrared) spectroscopies (near- and mid-IR), thermogravimetry (TG), differential thermal analysis, mass spectrometry (MS), and immunological detection with a life detector chip. In spite of the high organic content (ca. 20% wt/wt) of the sample, the Raman spectra only showed the characteristic spectral peaks of the remaining beta-carotene biomarker and faint peaks of phyllosilicates over a strong fluorescence background. IR spectra complemented the mineralogical information from Raman spectra and showed the main molecular vibrations of the humic acid functional groups. The TG-MS system showed the release of several volatile compounds attributed to biopolymers. An antibody microarray for detecting cyanobacteria (CYANOCHIP) detected biomarkers from Chroococcales, Nostocales, and Oscillatoriales orders. The results highlight limitations of each technique and suggest the necessity of complementary approaches in the search for biomarkers because some analytical techniques might be impaired by sample composition, presentation, or processing. Key Words: Planetary exploration-Life detection-Microbial mat-Life detector chip-Thermogravimetry-Raman spectroscopy-NIR-DRIFTS. Astrobiology 17, 984-996.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom