
Glutaredoxin 2 Reduces Both Thioredoxin 2 and Thioredoxin 1 and Protects Cells from Apoptosis Induced by Auranofin and 4-Hydroxynonenal
Author(s) -
ZhangHuihui,
YuCang Du,
ZhangXu,
Jun Lu,
HolmgrenArne
Publication year - 2014
Publication title -
antioxidants and redox signaling
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.277
H-Index - 190
eISSN - 1557-7716
pISSN - 1523-0864
DOI - 10.1089/ars.2013.5499
Subject(s) - glutaredoxin , auranofin , thioredoxin , thioredoxin reductase , oxidative stress , mitochondrion , microbiology and biotechnology , chemistry , cytosol , apoptosis , glutathione , biochemistry , biology , enzyme , immunology , rheumatoid arthritis
Mitochondrial thioredoxin (Trx) is critical for defense against oxidative stress-induced cell apoptosis. To date, mitochondrial thioredoxin reductase (TrxR) is the only known enzyme catalyzing Trx2 reduction in mitochondria. However, TrxR is sensitive to inactivation by exo/endogenous electrophiles, for example, 4-hydroxynonenal (HNE). In this study, we characterized the mitochondrial glutaredoxin 2 (Grx2) system as a backup for the mitochondrial TrxR. Meanwhile, as Grx2 is also present in the cytosol/nucleus of certain cancer cell lines, the reducing activity of Grx2 on Trx1 was also tested.