
The Thioredoxin Reductase-1 Inhibitor Aurothioglucose Attenuates Lung Injury and Improves Survival in a Murine Model of Acute Respiratory Distress Syndrome
Author(s) -
Rodney D. Britt,
Markus Velten,
Morgan L. Locy,
Lynette K. Rogers,
Trent E. Tipple
Publication year - 2014
Publication title -
antioxidants and redox signaling
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.277
H-Index - 190
eISSN - 1557-7716
pISSN - 1523-0864
DOI - 10.1089/ars.2013.5332
Subject(s) - ards , medicine , hyperoxia , pharmacology , gclm , glutathione , lung , bronchoalveolar lavage , acetylcysteine , immunology , chemistry , antioxidant , gclc , biochemistry , enzyme
Inflammation and oxygen toxicity increase free radical production and contribute to the development of acute respiratory distress syndrome (ARDS), which is a significant cause of morbidity and mortality in intensive care patients. We have previously reported increased glutathione (GSH) levels in lung epithelial cells in vitro and attenuated adult murine hyperoxic lung injury in vivo after pharmacological thioredoxin reductase-1 (TrxR1) inhibition. Using a murine ARDS model, we tested the hypothesis that aurothioglucose (ATG) treatment increases pulmonary GSH levels, attenuates lung injury, and decreases mortality in a GSH-dependent manner.