Effect of plenum chamber depth in a swirling fluidized bed
Author(s) -
M A Hafiz,
Mohd Faizal Mohideen Batcha,
Norzelawati Asmuin
Publication year - 2013
Publication title -
iop conference series materials science and engineering
Language(s) - English
Resource type - Journals
eISSN - 1757-899X
pISSN - 1757-8981
DOI - 10.1088/1757-899x/50/1/012021
Subject(s) - plenum space , distributor , pressure drop , mechanics , inlet , fluidized bed , computational fluid dynamics , airflow , materials science , flow (mathematics) , geology , physics , thermodynamics , geomorphology
This paper presents the numerical investigation via Computational Fluid Dynamic (CFD) to study the effect of plenum chamber depth on air flow a distribution in a swirling fluidized bed (SFB). A total of 9 simulations were conducted for 3 plenum chamber depths of 175 mm, 350 mm and 525 mm (below the distributor) for 3 different inlets: single, double and triple inlets. Air flow distribution was analyzed based on the tangential velocity distribution ad pressure drop at the distributor outlet. Statistical parameters used in characterizing the air flow distribution were standard deviation, skewness and kurtosis together with system pressure drop. An optimum plenum chamber depth has low statistical values, implying a uniform velocity distribution inside the bed while low pressure drops are necessary to reduce energy loss in the system. The findings yield that plenum chamber with 175 mm depth with via triple inlets suffices both criteria of high uniformity and low pressure drops.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom