Investigation of two heavy element scintillators by Monte-Carlo methods
Author(s) -
Anastasios Konstantinidis,
P. Liaparinos,
N. Kalivas,
George Panayiotakis,
I. Kandarakis
Publication year - 2009
Publication title -
journal of instrumentation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.741
H-Index - 84
ISSN - 1748-0221
DOI - 10.1088/1748-0221/4/05/p05019
Subject(s) - monte carlo method , scintillator , physics , nuclear physics , statistical physics , computational physics , optics , mathematics , statistics , detector
The aim of this study was to estimate the influence of K-characteristic radiation on the performance of x-ray scintillating screens containing two heavy elements by Monte Carlo methods. K-characteristic radiation is produced within materials of at least one heavy (high atomic number) element. This radiation may result either in spatial resolution degradation or in emission efficiency decrease. The scintillators studied were the following: LYSO (Lu1.8Y0.2SiO5 and LuYSiO5), CsI and YTaO4. All the aforementioned scintillators have two heavy elements, thus the K-characteristic radiation of the high-Z element can produce additional K-characteristic photons on the low-Z element, resulting in further degradation. Scintillator performance was described in terms of the: (a) Probability of generation and reabsorption of a K-characteristic photon (PKR) and (b) Spatial distribution of K-characteristic radiation within the scintillator material. A custom validated Monte Carlo model was used, in order to simulate the transport of K-characteristic radiation within the above scintillator materials. Results showed that, depending on screen thickness (20-100 mg/cm2) and incident photon energy (20-80 keV) the scintillator's emission efficiency may be significantly reduced. © 2009 IOP Publishing Ltd and SISSA
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom