Optimization of the LHCb track reconstruction
Author(s) -
B. Storaci
Publication year - 2015
Publication title -
journal of physics conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/664/7/072047
Subject(s) - track (disk drive) , computer science , aerospace engineering , physics , engineering , operating system
The LHCb track reconstruction uses sophisticated pattern recognition algorithms to reconstruct trajectories of charged particles. Their main feature is the use of a Hough- transform like approach to connect track segments from different sub-detectors, allowing for having no tracking stations in the magnet of LHCb. While yielding a high efficiency, the track reconstruction is a major contributor to the overall timing budget of the software trigger of LHCb, and will continue to be so in the light of the higher track multiplicity expected from Run II of the LHC. In view of this fact, key parts of the pattern recognition have been revised and redesigned. In this document the main features which were studied are presented. A staged approach strategy for the track reconstruction in the software trigger was investigated: it allows unifying complementary sets of tracks coming from the different stages of the high level trigger, resulting in a more exible trigger strategy and a better overlap between online and offline reconstructed tracks. Furthermore the use of parallelism was investigated, using SIMD instructions for time-critical parts of the software
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom