
Daily rainfall modeling using Neural Network
Author(s) -
Syarifah Diana Permai,
Margaretha Ohyver,
Mohd Khairul Bazli Mohd Aziz
Publication year - 2021
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/1988/1/012040
Subject(s) - autoregressive integrated moving average , artificial neural network , flooding (psychology) , three gorges , rainwater harvesting , flood myth , mean squared error , meteorology , computer science , environmental science , statistics , time series , geography , mathematics , artificial intelligence , engineering , machine learning , psychology , ecology , geotechnical engineering , archaeology , psychotherapist , biology
In the early 2020, Indonesia experienced flooding in several areas. This disaster caused a lot of damage and losses. One of the causes of flooding in Indonesia is due to high rainfall. This was not anticipated beforehand so there was a flood. Therefore, research on rainfall in Indonesia is very important to anticipate floods. If it is predicted that rainfall is very high and conditions do not allow it to accommodate, the government can prepare watersheds so that rainwater can flow and not be trapped. In this research, the rainfall data were obtained from Meteorological, Climatological, and Geophysical Agency (BMKG Indonesia), then the analysis of rainfall data in Indonesia was carried out. There are several statistical methods that can be used. There are ARIMA and Neural Network. In this research, the results of ARIMA model are used as input variables in the Neural Network model. Then there are several numbers of hidden layer in the Neural Network model that are compared. The results of ARIMA model and Neural Network model showed that Neural Network model is better than ARIMA model, because the mean square error (MSE) value of Neural Network model is smaller than ARIMA model.