
The multiplicative constant for the Meijer-G kernel determinant
Author(s) -
Christophe Charlier,
Jonatan Lenells,
Julian Mauersberger
Publication year - 2021
Publication title -
nonlinearity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.571
H-Index - 90
eISSN - 1361-6544
pISSN - 0951-7715
DOI - 10.1088/1361-6544/abd996
Subject(s) - mathematics , multiplicative function , constant (computer programming) , determinantal point process , kernel (algebra) , laguerre polynomials , point process , matrix (chemical analysis) , bessel function , product (mathematics) , hermitian matrix , cauchy distribution , mathematical analysis , random matrix , pure mathematics , geometry , statistics , eigenvalues and eigenvectors , physics , materials science , quantum mechanics , computer science , composite material , programming language
We compute the multiplicative constant in the large gap asymptotics of the Meijer- G point process. This point process generalizes the Bessel point process and appears at the hard edge of Cauchy–Laguerre multi-matrix models and of certain product random matrix ensembles.