Towards Gauge theory for a class of commutative and non-associative fuzzy spaces
Author(s) -
Sanjaye Ramgoolam
Publication year - 2004
Publication title -
journal of high energy physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.998
H-Index - 261
eISSN - 1126-6708
pISSN - 1029-8479
DOI - 10.1088/1126-6708/2004/03/034
Subject(s) - associative property , brst quantization , gauge covariant derivative , introduction to gauge theory , covariant transformation , gauge theory , mathematics , supersymmetric gauge theory , pure mathematics , commutative property , gauge anomaly , algebra over a field , physics , mathematical physics
We discuss gauge theories for commutative but non-associative algebrasrelated to the $ SO(2k+1)$ covariant finite dimensional fuzzy $2k$-spherealgebras. A consequence of non-associativity is that gauge fields and gaugeparameters have to be generalized to be functions of coordinates as well asderivatives. The usual gauge fields depending on coordinates only are recoveredafter a partial gauge fixing.The deformation parameter for these commutativebut non-associative algebras is a scalar of the rotation group. This suggestsinteresting string-inspired algebraic deformations of spacetime which preserveLorentz-invariance.Comment: 34 pages ; v2, v3- minor typos fixe
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom