Kaluza-Klein bundles and manifolds of exceptional holonomy
Author(s) -
Peter Kaste,
Ruben Minasian,
Michela Petrini,
Alessandro Tomasiello
Publication year - 2002
Publication title -
journal of high energy physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.998
H-Index - 261
eISSN - 1126-6708
pISSN - 1029-8479
DOI - 10.1088/1126-6708/2002/09/033
Subject(s) - holonomy , spinor , supersymmetry , physics , magnetic monopole , conformal map , killing spinor , string (physics) , mathematical physics , metric (unit) , lift (data mining) , pure mathematics , theoretical physics , mathematics , mathematical analysis , quantum mechanics , supergravity , computer science , operations management , economics , data mining
We show how in the presence of RR two-form field strength the conditions forpreserving supersymmetry on six- and seven-dimensional manifolds lead tocertain generalizations of monopole equations. For six dimensions the stringframe metric is Kaehler with the complex structure that descends from theoctonions if in addition we assume F^{(1,1)}=0. The susy generator is a gaugecovariantly constant spinor. For seven dimensions the string frame metric isconformal to a G_2 metric if in addition we assume the field strength to obey aselfduality constraint. Solutions to these equations lift to geometries of G_2and Spin(7) holonomy respectively.Comment: LaTeX, 13 page
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom