Moduli spaces of maximally supersymmetric solutions on noncommutative tori and noncommutative orbifolds
Author(s) -
Anatoly Konechny,
Albert Schwarz
Publication year - 2000
Publication title -
journal of high energy physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.998
H-Index - 261
eISSN - 1126-6708
pISSN - 1029-8479
DOI - 10.1088/1126-6708/2000/09/005
Subject(s) - orbifold , noncommutative geometry , moduli space , torus , commutative property , constant curvature , connection (principal bundle) , moduli , pure mathematics , mathematics , equivariant map , toroid , curvature , physics , geometry , quantum mechanics , plasma
A maximally supersymmetric configuration of super Yang-Mills living on anoncommutative torus corresponds to a constant curvature connection. On anoncommutative toroidal orbifold there is an additional constraint that theconnection be equivariant. We study moduli spaces of (equivariant) constantcurvature connections on noncommutative even-dimensional tori and on toroidalorbifolds. As an illustration we work out the cases of Z_{2} and Z_{4}orbifolds in detail. The results we obtain agree with a commutative picturedescribing systems of branes wrapped on cycles of the torus and branes stuck atexceptional orbifold points.Comment: 21 pages, Late
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom