z-logo
open-access-imgOpen Access
Drift bifurcations of relative equilibria and transitions of spiral waves
Author(s) -
Peter Ashwin,
Ian Melbourne,
Matthew Nicol
Publication year - 1999
Publication title -
nonlinearity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.571
H-Index - 90
eISSN - 1361-6544
pISSN - 0951-7715
DOI - 10.1088/0951-7715/12/4/301
Subject(s) - mathematics , homogeneous space , equivariant map , dynamical systems theory , lie algebra , symmetry (geometry) , bifurcation , spiral (railway) , character (mathematics) , pure mathematics , group (periodic table) , lie group , mathematical analysis , geometry , physics , nonlinear system , quantum mechanics
We consider dynamical systems that are equivariant under a noncompact Lie group of symmetries and the drift of relative equilibria in such systems. In particular, we investigate how the drift for a parametrized family of normally hyperbolic relative equilibria can change character at what we call a `drift bifurcation'. To do this, we use results of Arnold to analyse parametrized families of elements in the Lie algebra of the symmetry group. We examine effects in physical space of such drift bifurcations for planar reaction-diffusion systems and note that these effects can explain certain aspects of the transition from rigidly rotating spirals to rigidly propagating `retracting waves'. This is a bifurcation observed in numerical simulations of excitable media where the rotation rate of a family of spirals slows down and gives way to a semi-infinite translating wavefront.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom