z-logo
open-access-imgOpen Access
Signals of Positive Selection in Sea Slug Transcriptomes
Author(s) -
Serena A. Caplins
Publication year - 2021
Publication title -
biological bulletin
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.669
H-Index - 77
eISSN - 1939-8697
pISSN - 0006-3185
DOI - 10.1086/715841
Subject(s) - biology , salinity , ecology , habitat , transcriptome , phenotype , gene , intertidal zone , evolutionary biology , genetics , gene expression
AbstractUnderstanding how species may respond to climate change is of paramount importance. Species that occupy highly heterogenous environments, such as intertidal zone estuarine habitats, provide an ideal test case for examining phenotypic and genomic adaptations to different environmental conditions, which may influence their response to rapidly shifting climatic conditions. The California coast is projected to experience changes in both temperature and salinity, which currently vary seasonally and latitudinally. Using comparative transcriptomics, I documented patterns of positive selection between the northern-dwelling planktotrophic sacoglossan sea slug Alderia modesta , which is remarkably tolerant of low temperatures and low salinities, and its southern congener Alderia willowi , which exhibits a striking flexibility for larval type in response to seasonally shifting changes in temperature and salinity. Out of over 4000 1-to-1 orthologous genes, I found a signal of positive selection between A. willowi and A. modesta for genes involved in cell membrane and cell transport, particularly ion homeostasis (aquaporin), cell-cell signal transduction, and phosphorylation (reduced nicotinamide adenine dinucleotide [NADH] dehydrogenase). Positive selection for ion homeostasis in A. modesta has implications for its ability to tolerate the lower salinity of its northern range, and in A. willowi substitutions in NADH may assist in the high temperature tolerance of its southern California habitats. Identifying these candidate genes enables future studies of their functionalization as we seek to understand the relationship between phenotype and genotype in species whose phenotypes are influenced by environmental conditions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom