z-logo
open-access-imgOpen Access
Ecological Consequences of Intraspecific Variation in Coevolutionary Systems
Author(s) -
Athmanathan Senthilnathan,
Sergey Gavrilets
Publication year - 2020
Publication title -
the american naturalist
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.954
H-Index - 205
eISSN - 1537-5323
pISSN - 0003-0147
DOI - 10.1086/711886
Subject(s) - intraspecific competition , variation (astronomy) , coevolution , ecology , biology , geography , evolutionary biology , astrophysics , physics
AbstractThe patterns and outcomes of coevolution are expected to depend on intraspecific trait variation. Various evolutionary factors can change this variation in time. As a result, modeling coevolutionary processes solely in terms of mean trait values may not be sufficient; one may need to study the dynamics of the whole trait distribution. Here, we develop a theoretical framework for studying the effects of evolving intraspecific variation in two-species coevolutionary systems. In particular, we build and study mathematical models of competition, exploiter-victim interactions, and mutualism in which the strength of within- and between-species interactions depends on the difference in continuously varying traits between individuals reproducing asexually. We use analytical approximations based on the invasion analysis and supplement them with numerical results. We find that intraspecific variation can be maintained if stabilizing selection is weak in at least one species. When intraspecific variation is maintained under competition or mutualism, coexistence in a stable equilibrium is promoted when between-species interactions mostly happen between individuals similar in trait values. In contrast, in exploiter-victim systems coexistence typically requires strong interactions between dissimilar exploiters and victims. We show that trait distributions can become multimodal. Our approach and results contribute to the understanding of the ecological consequences of intraspecific variation in coevolutionary systems by exploring its effects on population densities and trait distributions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom