z-logo
open-access-imgOpen Access
High Preservation Potential of Paleogeographic Range Size Distributions in Deep Time
Author(s) -
Simon A.F. Darroch,
Michelle Casey,
Gawain T. Antell,
Amy Sweeney,
Erin E. Saupe
Publication year - 2020
Publication title -
the american naturalist
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.954
H-Index - 205
eISSN - 1537-5323
pISSN - 0003-0147
DOI - 10.1086/710176
Subject(s) - extinction (optical mineralogy) , extinction event , range (aeronautics) , paleontology , fossil record , macroevolution , spurious relationship , geology , paleoecology , geologic record , ecology , biology , phylogenetics , statistics , biological dispersal , population , biochemistry , materials science , demography , mathematics , sociology , composite material , gene
AbstractReconstructing geographic range sizes from fossil data is a crucial tool in paleoecology, elucidating macroecological and macroevolutionary processes. Studies examining links between range size and extinction risk may also offer a predictive tool for identifying species most vulnerable in the "sixth mass extinction." However, the extent to which paleogeographic ranges can be recorded reliably in the fossil record is unknown. We perform simulation-based extinction experiments to examine (1) the fidelity of paleogeographic range size preservation in deep time, (2) the relative performance of different methods for reconstructing range size, and (3) the reliability of detecting patterns of extinction "selectivity" on range size. Our results suggest both that relative paleogeographic range size can be consistently reconstructed and that selectivity patterns on range size can be preserved under many extinction intensities, even when sedimentary rocks are scarce. By identifying patterns of selectivity across Earth's history, paleontologists can thus augment neontological work that aims to predict and prevent extinctions of living species. Last, we find that introducing "false extinctions" in the fossil record can produce spurious range-selectivity signals. Errors in the temporal ranges of species may pose a larger barrier to reconstructing range size-extinction risk signals than the spatial distribution of fossiliferous sediments.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom