Assortative Mating in Hybrid Zones Is Remarkably Ineffective in Promoting Speciation
Author(s) -
Darren E. Irwin
Publication year - 2020
Publication title -
the american naturalist
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.954
H-Index - 205
eISSN - 1537-5323
pISSN - 0003-0147
DOI - 10.1086/708529
Subject(s) - assortative mating , biology , reproductive isolation , mating , evolutionary biology , hybrid , genetic algorithm , hybrid zone , mating preferences , mate choice , zoology , genetics , gene flow , genetic variation , population , gene , botany , demography , sociology
Partial prezygotic isolation is often viewed as more important than partial postzygotic isolation (low fitness of hybrids) early in the process of speciation. I simulate secondary contact between two populations (species) to examine effects of assortative mating and low hybrid fitness in preventing blending. A small reduction in hybrid fitness (e.g., by 10%) produces a narrower hybrid zone than a strong but imperfect mating preference (e.g., 10 times stronger preference for conspecific over heterospecific mates). In the latter case, rare F 1 hybrids find each other attractive (due to assortative mating), leading to the buildup of a continuum of intermediates. The weakness of assortative mating compared with reduced fitness of hybrids in preventing blending is robust to varying genetic bases of these traits. Assortative mating is most powerful in limiting blending when it is encoded by a single locus or is essentially complete, or when there is a large mate search cost. In these cases assortative mating is likely to cause hybrids to have low fitness, due to frequency-dependent mating disadvantage of individuals of rare mating types. These results prompt a questioning of the concept of partial prezygotic isolation, since it is not very isolating unless there is also postzygotic isolation.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom