z-logo
open-access-imgOpen Access
Community Assembly and Climate Mismatch in Late Quaternary Eastern North American Pollen Assemblages
Author(s) -
Clarke A. Knight,
Jessica L. Blois,
Benjamin Blonder,
Marc MaciasFauria,
Alejandro Ordóñez,
JensChristian Svenning
Publication year - 2019
Publication title -
the american naturalist
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.954
H-Index - 205
eISSN - 1537-5323
pISSN - 0003-0147
DOI - 10.1086/706340
Subject(s) - climate change , ecology , biological dispersal , pollen , assemblage (archaeology) , last glacial maximum , glacial period , geography , latitude , ecological niche , physical geography , biology , habitat , paleontology , population , geodesy , demography , sociology
Plant community response to climate change ranges from synchronous tracking to strong mismatch. Explaining this variation in climate change response is critical for accurate global change modeling. Here we quantify how closely assemblages track changes in climate (match/mismatch) and how broadly climate niches are spread within assemblages (narrow/broad ecological tolerance, or "filtering") using data for the past 21,000 years for 531 eastern North American fossil pollen assemblages. Although climate matching has been strong over the last 21 millennia, mismatch increased in 30% of assemblages during the rapid climate shifts between 14.5 and 10 ka. Assemblage matching rebounded toward the present day in 10%-20% of assemblages. Climate-assemblage mismatch was greater in tree-dominated and high-latitude assemblages, consistent with persisting populations, slower dispersal rates, and glacial retreat. In contrast, climate matching was greater for assemblages comprising taxa with higher median seed mass. More than half of the assemblages were climatically filtered at any given time, with peak filtering occurring at 8.5 ka for nearly 80% of assemblages. Thus, vegetation assemblages have highly variable rates of climate mismatch and filtering over millennial scales. These climate responses can be partially predicted by species' traits and life histories. These findings help constrain predictions for plant community response to contemporary climate change.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom