z-logo
open-access-imgOpen Access
Aggregation of Infective Stages of Parasites as an Adaptation and Its Implications for the Study of Parasite-Host Interactions
Author(s) -
André Morrill,
Mark R. Forbes
Publication year - 2015
Publication title -
the american naturalist
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.954
H-Index - 205
eISSN - 1537-5323
pISSN - 0003-0147
DOI - 10.1086/684508
Subject(s) - parasitism , biology , host (biology) , adaptation (eye) , coinfection , parasite hosting , ecology , evolutionary biology , zoology , human immunodeficiency virus (hiv) , immunology , computer science , neuroscience , world wide web
The causes and consequences of aggregation among conspecifics have received much attention. For infecting macroparasites, causes include variation among hosts in susceptibility and whether infective stages are aggregated in the environment. Here, we link these two phenomena and explore whether aggregation of infective stages in the environment is adaptive to parasites encountering host condition-linked defenses and what effect such aggregations have for parasite-host interactions. Using simulation models, we show that parasite fitness is increased by aggregates attacking a host, particularly when investment into defenses is high. The fitness benefit of aggregation remains despite inclusion of factors that should curb the benefits of aggregation, namely, mortality of low-condition hosts (those hosts expected to be most susceptible to parasitism) and costs of high coinfection. For sample sizes common in studies, aggregation of infective stages reduces the likelihood of detecting host condition-parasitism relations, even when host condition is the only other factor in models affecting parasitism. Thus, it is not surprising that the expected inverse relations between host condition and parasitism, commonly a premise in studies of parasite-host interactions, are inconsistently found. An understanding of how parasites encounter hosts is thus needed for developing theory for parasite-host ecological and evolutionary interactions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom