z-logo
open-access-imgOpen Access
Developmental and Immediate Thermal Environments Shape Energetic Trade-Offs, Growth Efficiency, and Metabolic Rate in Divergent Life-History Ecotypes of the Garter Snake Thamnophis elegans
Author(s) -
Eric J. Gangloff,
David Vleck,
Anne M. Bronikowski
Publication year - 2015
Publication title -
physiological and biochemical zoology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.957
H-Index - 85
eISSN - 1537-5293
pISSN - 1522-2152
DOI - 10.1086/682239
Subject(s) - ectotherm , biology , ecotype , ecology , life history theory , natural selection , metabolic rate , adaptation (eye) , basal metabolic rate , trade off , zoology , allometry , life history , selection (genetic algorithm) , biochemistry , artificial intelligence , neuroscience , computer science , endocrinology
Interactions at all levels of ecology are influenced by the rate at which energy is obtained, converted, and allocated. Trade-offs in energy allocation within individuals in turn form the basis for life-history theory. Here we describe tests of the influences of temperature, developmental environment, and genetic background on measures of growth efficiency and resting metabolic rate in an ectothermic vertebrate, the western terrestrial garter snake (Thamnophis elegans). After raising captive-born snakes from divergent life-history ecotypes on thermal regimes mimicking natural habitat differences (2 × 2 experimental design of ecotype and thermal environment), we measured oxygen consumption rate at temperatures spanning the activity range of this species. We found ecotypic differences in the reaction norms of snakes across the measured range of temperatures and a temperature-dependent allometric relationship between mass and metabolic rate predicted by the metabolic-level boundaries hypothesis. Additionally, we present evidence of within-individual trade-offs between growth efficiency and resting metabolic rate, as predicted by classic life-history theory. These observations help illuminate the ultimate and proximate factors that underlie variation in these interrelated physiological and life-history traits.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom