Viral Evolution and Escape during Acute HIV‐1 Infection
Author(s) -
Christian L. Boutwell,
Morgane Rolland,
Joshua T. Herbeck,
James I. Mullins,
Todd M. Allen
Publication year - 2010
Publication title -
the journal of infectious diseases
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.69
H-Index - 252
eISSN - 1537-6613
pISSN - 0022-1899
DOI - 10.1086/655653
Subject(s) - immune system , virology , virus , immune escape , biology , viral replication , immunology , human immunodeficiency virus (hiv) , viral evolution , transmission (telecommunications) , immunity , genetics , gene , genome , electrical engineering , engineering
The extensive genetic diversity of human immunodeficiency virus type 1 (HIV-1) presents a significant barrier to the development of an effective and durable HIV vaccine. This variability not only makes it difficult to identify the targets against which immune responses should be directed, but it also confers on the virus the capacity for rapid escape from effective immune responses. Here, we describe recent investigations of the genetic diversity of HIV-1 at transmission and of the evolution of the virus as it adapts to the host immune environment during the acute phase of HIV-1 infection. These studies increase our understanding of the virology of the earliest stages of HIV-1 infection and provide critical insights into the mechanisms underlying viral replication and immune control of diverse HIV-1 strains. Such knowledge will inform the design of smarter, more effective vaccines capable of inducing immune control of HIV-1.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom