Transcriptional Profiling ofClostridium difficileand Caco‐2 Cells during Infection
Author(s) -
Tavan Janvilisri,
Joy Scaria,
YungFu Chang
Publication year - 2010
Publication title -
the journal of infectious diseases
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.69
H-Index - 252
eISSN - 1537-6613
pISSN - 0022-1899
DOI - 10.1086/653484
Subject(s) - clostridium difficile , caco 2 , biology , diarrhea , microbiology and biotechnology , pathogenesis , signal transduction , gene , cell , immunology , medicine , genetics , antibiotics
Clostridium difficile is well recognized as the most common infectious cause of nosocomial diarrhea. The incidence and severity of C. difficile infection (CDI) is increasing worldwide. Here, we evaluated simultaneously the transcriptional changes in the human colorectal epithelial Caco-2 cells and in C. difficile after infection. A total of 271 transcripts in Caco-2 cells and 207 transcripts in C. difficile were significantly differentially expressed at 1 time point during CDI. We used the gene ontology annotations and protein-protein network interactions to underline a framework of target molecules that could potentially play a key role during CDI. These genes included those associated with cellular metabolism, transcription, transport, cell communication, and signal transduction. Our data identified certain key factors that have previously been reported to be involved in CDI, as well as novel determinants that may participate in a complex mechanism underlying the host response to infection, bacterial adaptation, and pathogenesis.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom