z-logo
open-access-imgOpen Access
Synchrony and Stability of Food Webs in Metacommunities
Author(s) -
Tarik C. Gouhier,
Frédéric Guichard,
Andrew Gonzalez
Publication year - 2010
Publication title -
the american naturalist
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.954
H-Index - 205
eISSN - 1537-5323
pISSN - 0003-0147
DOI - 10.1086/649579
Subject(s) - metacommunity , biological dispersal , metapopulation , food web , intraspecific competition , ecology , biology , abundance (ecology) , population , trophic level , demography , sociology
Synchrony has fundamental but conflicting implications for the persistence and stability of food webs at local and regional scales. In a constant environment, compensatory dynamics between species can maintain food web stability, but factors that synchronize population fluctuations within and between communities are expected to be destabilizing. We studied the dynamics of a food web in a metacommunity to determine how environmental variability and dispersal affect stability by altering compensatory dynamics and average species abundance. When dispersal rate is high, weak correlated environmental fluctuations promote food web stability by reducing the amplitude of compensatory dynamics. However, when dispersal rate is low, weak environmental fluctuations reduce food web stability by inducing intraspecific synchrony across communities. Irrespective of dispersal rate, strong environmental fluctuations disrupt compensatory dynamics and decrease stability by inducing intermittent correlated fluctuations between consumers in local food webs, which reduce both total consumer abundance and predator abundance. Strong correlated environmental fluctuations lead to (i) spatially asynchronous and highly correlated local consumer dynamics when dispersal is low and (ii) spatially synchronous but intermediate local consumer correlation when dispersal is high. By controlling intraspecific synchrony, dispersal mediates the capacity of strong environmental fluctuations to disrupt compensatory dynamics at both local and metacommunity scales.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom