Antimicrobial Susceptibility Testing: A Review of General Principles and Contemporary Practices
Author(s) -
James H. Jorgensen,
Mary Jane Ferraro
Publication year - 2009
Publication title -
clinical infectious diseases
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.44
H-Index - 336
eISSN - 1537-6591
pISSN - 1058-4838
DOI - 10.1086/647952
Subject(s) - broth microdilution , flexibility (engineering) , medicine , antibiotic resistance , biochemical engineering , antimicrobial , risk analysis (engineering) , minimum inhibitory concentration , microbiology and biotechnology , biology , antibiotics , statistics , mathematics , engineering
An important task of the clinical microbiology laboratory is the performance of antimicrobial susceptibility testing of significant bacterial isolates. The goals of testing are to detect possible drug resistance in common pathogens and to assure susceptibility to drugs of choice for particular infections. The most widely used testing methods include broth microdilution or rapid automated instrument methods that use commercially marketed materials and devices. Manual methods that provide flexibility and possible cost savings include the disk diffusion and gradient diffusion methods. Each method has strengths and weaknesses, including organisms that may be accurately tested by the method. Some methods provide quantitative results (eg, minimum inhibitory concentration), and all provide qualitative assessments using the categories susceptible, intermediate, or resistant. In general, current testing methods provide accurate detection of common antimicrobial resistance mechanisms. However, newer or emerging mechanisms of resistance require constant vigilance regarding the ability of each test method to accurately detect resistance.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom