Predictive Value of HIV‐1 Genotypic Resistance Test Interpretation Algorithms
Author(s) -
SooYon Rhee,
W. Jeffrey Fessel,
Tommy F. Liu,
Natalia Marlowe,
Charles M. Rowland,
Richard A. Rode,
Anne–Mieke Vandamme,
Kristel Van Laethem,
Françoise BrunVézinet,
Vincent Cálvez,
Jonathan Taylor,
Leo B. Hurley,
Michael A. Horberg,
Robert W. Shafer
Publication year - 2009
Publication title -
the journal of infectious diseases
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.69
H-Index - 252
eISSN - 1537-6613
pISSN - 0022-1899
DOI - 10.1086/600073
Subject(s) - human immunodeficiency virus (hiv) , predictive value , hiv drug resistance , algorithm , genotype , drug resistance , interpretation (philosophy) , medicine , test (biology) , resistance (ecology) , virology , antiretroviral therapy , computer science , viral load , biology , genetics , ecology , gene , programming language , paleontology
Interpreting human immunodeficiency virus type 1 (HIV-1) genotypic drug-resistance test results is challenging for clinicians treating HIV-1-infected patients. Multiple drug-resistance interpretation algorithms have been developed, but their predictive value has rarely been evaluated using contemporary clinical data sets.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom