Treatment with Protein Synthesis Inhibitors Improves Outcomes of Secondary Bacterial Pneumonia after Influenza
Author(s) -
Åsa Karlström,
Kelli L. Boyd,
B. Keith English,
Jonathan A. McCullers
Publication year - 2008
Publication title -
the journal of infectious diseases
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.69
H-Index - 252
eISSN - 1537-6613
pISSN - 0022-1899
DOI - 10.1086/596051
Subject(s) - azithromycin , ampicillin , clindamycin , pneumonia , streptococcus pneumoniae , proinflammatory cytokine , antibiotics , immunology , medicine , microbiology and biotechnology , inflammation , biology
Pneumonia occurring as a secondary infection after influenza is a major cause of excess morbidity and mortality, despite the availability and use of antibiotics active against Streptococcus pneumoniae. We hypothesized that the use of a bacteriostatic protein synthesis inhibitor would improve outcomes by reducing the inflammatory response. BALB/cJ mice infected with influenza virus and superinfected with S. pneumoniae were treated with either the cell-wall-active antibiotic ampicillin or the protein synthesis inhibitor clindamycin or azithromycin. In the model, ampicillin therapy performed significantly worse (survival rate, 56%) than (1) clindamycin therapy used either alone (82%) or in combination with ampicillin (80%) and (2) azithromycin (92%). Improved survival appeared to be mediated by decreased inflammation manifested as lower levels of inflammatory cells and proinflammatory cytokines in the lungs and by observation of less-severe histopathologic findings. These data suggest that beta-lactam therapy may not be optimal as a first-line treatment for community-acquired pneumonia when it follows influenza.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom