z-logo
open-access-imgOpen Access
Correlations among Fertility Components Can Maintain Mixed Mating in Plants
Author(s) -
Mark O. Johnston,
Emmanuelle Porcher,
PierreOlivier Cheptou,
Christopher G. Eckert,
Elizabeth Elle,
Monica A. Geber,
Susan Kalisz,
John K. Kelly,
David A. Moeller,
Mario VallejoMarín,
Alice A. Winn
Publication year - 2008
Publication title -
the american naturalist
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.954
H-Index - 205
eISSN - 1537-5323
pISSN - 0003-0147
DOI - 10.1086/593705
Subject(s) - selfing , inbreeding depression , biology , outcrossing , mating system , genetic load , ovule , mating , fertility , evolutionary biology , inbreeding , pollen , ecology , population , demography , sociology
Classical models studying the evolution of self-fertilization in plants conclude that only complete selfing and complete outcrossing are evolutionarily stable. In contrast with this prediction, 42% of seed-plant species are reported to have rates of self-fertilization between 0.2 and 0.8. We propose that many previous models fail to predict intermediate selfing rates because they do not allow for functional relationships among three components of reproductive fitness: self-fertilized ovules, outcrossed ovules, and ovules sired by successful pollen export. Because the optimal design for fertility components may differ, conflicts among the alternative pathways to fitness are possible, and the greatest fertility may be achieved with some self-fertilization. Here we develop and analyze a model to predict optimal selfing rates that includes a range of possible relationships among the three components of reproductive fitness, as well as the effects of evolving inbreeding depression caused by deleterious mutations and of selection on total seed number. We demonstrate that intermediate selfing is optimal for a wide variety of relationships among fitness components and that inbreeding depression is not a good predictor of selfing-rate evolution. Functional relationships subsume the myriad effects of individual plant traits and thus offer a more general and simpler perspective on mating system evolution.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom