A New Humanized Mouse Model of Epstein‐Barr Virus Infection That Reproduces Persistent Infection, Lymphoproliferative Disorder, and Cell‐Mediated and Humoral Immune Responses
Author(s) -
Misako Yajima,
KenIchi Imadome,
Atsuko Nakagawa,
Satoru Watanabe,
Kazuo Terashima,
Hiroyuki Nakamura,
Mamoru Ito,
Norio Shimizu,
Mitsuo Honda,
Naoki Yamamoto,
Shigeyoshi Fujiwara
Publication year - 2008
Publication title -
the journal of infectious diseases
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.69
H-Index - 252
eISSN - 1537-6613
pISSN - 0022-1899
DOI - 10.1086/590502
Subject(s) - immune system , immunology , virology , virus , biology , epstein–barr virus , antibody , humoral immunity
The functional human immune system, including T, B, and natural killer lymphocytes, is reconstituted in NOD/Shi-scid/IL-2Rgamma(null) (NOG) mice that receive hematopoietic stem cell transplants. Here, we show that these humanized mice can recapitulate key aspects of Epstein-Barr virus (EBV) infection in humans. Inoculation with approximately 1 x 10(3) TD(50) (50% transforming dose) of EBV caused B cell lymphoproliferative disorder, with histopathological findings and latent EBV gene expression remarkably similar to that in immunocompromised patients. Inoculation with a low dose of virus (<or=1 x 10(1) TD(50)), in contrast, resulted in apparently asymptomatic persistent infection. Levels of activated CD8(+) T cells increased dramatically in the peripheral blood of infected mice, and enzyme-linked immunospot assay and flow cytometry demonstrated an EBV-specific T cell response. Immunoglobulin M antibody specific to the EBV-encoded protein BFRF3 was detected in serum from infected mice. The NOG mouse is the most comprehensive small-animal model of EBV infection described to date and should facilitate studies of the pathogenesis, prevention, and treatment of EBV infection.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom