Multiscale Astronomical Image Processing Based on Nonlinear Partial Differential Equations
Author(s) -
Meyer Z. Pesenson,
William Roby,
B. McCollum
Publication year - 2008
Publication title -
the astrophysical journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.376
H-Index - 489
eISSN - 1538-4357
pISSN - 0004-637X
DOI - 10.1086/589276
Subject(s) - image processing , smoothing , visualization , computer vision , pipeline (software) , digital image processing , computer science , noise (video) , data processing , signal processing , artificial intelligence , image (mathematics) , physics , computer graphics (images) , digital signal processing , database , computer hardware , programming language
Astronomical applications of recent advances in the field of nonastronomical image processing are presented. These innovative methods, applied to multiscale astronomical images, increase signal-to-noise ratio, do not smear point sources or extended diffuse structures, and are thus a highly useful preliminary step for detection of different features including point sources, smoothing of clumpy data, and removal of contaminants from background maps. We show how the new methods, combined with other algorithms of image processing, unveil fine diffuse structures while at the same time enhance detection of localized objects, thus facilitating interactive morphology studies and paving the way for the automated recognition and classification of different features. We have also developed a new application framework for astronomical image processing that implements some recent advances made in computer vision and modern image processing, along with original algorithms based on nonlinear partial differential equations. The framework enables the user to easily set up and customize an image-processing pipeline interactively; it has various common and new visualization features and provides access to many astronomy data archives. Altogether, the results presented here demonstrate the first implementation of a novel synergistic approach based on integration of image processing, image visualization, and image quality assessment.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom