z-logo
open-access-imgOpen Access
The Damping Rates of Embedded Oscillating Starless Cores
Author(s) -
Avery E. Broderick,
Ramesh Narayan,
Eric Keto,
C. J. Lada
Publication year - 2008
Publication title -
the astrophysical journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.376
H-Index - 489
eISSN - 1538-4357
pISSN - 0004-637X
DOI - 10.1086/589178
Subject(s) - physics , oscillation (cell signaling) , perturbation (astronomy) , formalism (music) , excitation , astrophysics , spectral line , classical mechanics , mechanics , astronomy , quantum mechanics , art , musical , genetics , visual arts , biology
In a previous paper we demonstrated that non-radial hydrodynamic oscillations of a thermally- supported (Bonnor-Ebert) sphere embedded in a low-density, high-temperature medium persist for many periods. The predicted column density variations and molecular spectral line profiles are similar to those observed in the Bok globule B68 suggesting that the motions in some starless cores may be os- cillating perturbations on a thermally supported equilibrium structure. Such oscillations can produce molecular line maps which mimic rotation, collapse or expansion, and thus could make determining the dynamical state from such observations alone difficult. However, while B68 is embedded in a very hot, low-density medium, many starless cores are not, having interior/exterior density contrasts closer to unity. In this paper we investigate the oscillation damping rate as a function of the exterior density. For concreteness we use the same interior model employed in Broderick et al. (2007), with varying models for the exterior gas. We also develop a simple analytical formalism, based upon the linear perturbation analysis of the oscillations, which predicts the contribution to the damping rates due to the excitation of sound waves in the external medium. We find that the damping rate of oscillations on globules in dense molecular environments is always many periods, corresponding to hundreds of thousands of years, and persisting over the inferred lifetimes of the globules. Subject headings: stars: formation, hydrodynamics, ISM: globules, ISM: clouds

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom