A NovelPlasmodium falciparumExpression System for Assessing Antifolate Resistance Caused by MutantP. vivaxDihydrofolate Reductase–Thymidylate Synthase
Author(s) -
Michael T. O’Neil,
Michael L.J. Korsinczky,
Karryn Gresty,
Alyson Auliff,
Qin Cheng
Publication year - 2007
Publication title -
the journal of infectious diseases
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.69
H-Index - 252
eISSN - 1537-6613
pISSN - 0022-1899
DOI - 10.1086/519286
Subject(s) - dihydrofolate reductase , plasmodium falciparum , antifolate , pyrimethamine , plasmodium vivax , biology , mutant , thymidylate synthase , virology , malaria , genetics , gene , immunology , antimetabolite , fluorouracil , chemotherapy
With the emergence of drug-resistant vivax malaria, in vitro studies are urgently needed to examine resistance mechanisms and for drug development. Currently, Plasmodium vivax culturing is inadequate for addressing these needs; therefore, surrogate biological systems have been developed. Although these systems are informative, they do not address Plasmodium species-specific mechanisms, such as drug delivery through erythrocytes and parasite membranes. Here, we demonstrate that P. falciparum is an excellent biological system for expression of P. vivax dhfr-ts alleles to assess dihydrofolate reductase (DHFR)-thymidylate synthase interactions with antifolates. Our results show that the P. vivax dhfr-ts quadruple-mutant allele AMRU1, expressed in P. falciparum, provides significant protection against pyrimethamine, cycloguanil, and clocicguanil. Moreover, the PvDHFR quadruple mutant confers greater resistance to cycloguanil, clociguanil, and WR99210 than the PfDHFR quadruple mutant. Modeling of both P. vivax and P. falciparum DHFR quadruple mutants suggests that mutations unique to P. vivax DHFR are responsible for differences seen in parasite susceptibility to antifolates.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom