β‐1,3 Glucan as a Test for Central Venous Catheter Biofilm Infection
Author(s) -
Jeniel E. Nett,
Leslie M. Lincoln,
Karen Marchillo,
David R. Andes
Publication year - 2007
Publication title -
the journal of infectious diseases
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.69
H-Index - 252
eISSN - 1537-6613
pISSN - 0022-1899
DOI - 10.1086/517522
Subject(s) - biofilm , microbiology and biotechnology , candida albicans , in vivo , candida glabrata , catheter , corpus albicans , in vitro , lysis , biology , central venous catheter , glucan , bacteria , medicine , immunology , surgery , biochemistry , genetics
Biofilms are microbial communities that are associated with solid surfaces such as intravascular catheters. Candida species are a major cause of medical device-associated infections. Twenty percent to 70% of all candidemias are associated with this biofilm process. Diagnosis and effective treatment of Candida device-associated infections requires removal of the involved device. The ability to identify a biofilm device infection before catheter removal may obviate removal of a substantial number of devices. Prior studies in our laboratory identified cell wall changes (specifically, increased beta -1,3 glucan) associated with biofilm, compared with planktonic C. albicans. Both in vitro and in vivo (catheter) biofilm models were used to determine whether biofilm cells secreted more beta -1,3 glucan and whether these differences could be used to discern the presence of a Candida biofilm infection with 3 species (C. albicans, C. glabrata, and C. parapsilosis). A limulus lysate assay was used to quantify beta -1,3 glucan in supernatants from planktonic or biofilm cultures and in the serum of rats with an intravascular catheter biofilm infection or disseminated candidiasis. beta -1,3 glucan was detected from both in vitro and in vivo models from each condition. However, the concentrations of beta -1,3 glucan from the biofilm conditions were 4-10-fold greater in vitro (P<.001) and were 10-fold greater in vivo (P<.001), despite equal or fewer numbers of cells in the biofilm conditions. These results suggest the secreted polysaccharide beta -1,3 glucan may serve as a useful tool for the diagnosis of Candida biofilm and device-associated infections.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom