z-logo
open-access-imgOpen Access
Interleukin‐12‐Dependent Mechanisms in the Clearance of Blood‐Stage Murine Malaria ParasitePlasmodium bergheiXAT, an Attenuated Variant ofP. bergheiNK65
Author(s) -
Takayuki Yoshimoto,
Toshihiko Yoneto,
Seiji Waki,
Hideo Nariuchi
Publication year - 1998
Publication title -
the journal of infectious diseases
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.69
H-Index - 252
eISSN - 1537-6613
pISSN - 0022-1899
DOI - 10.1086/515301
Subject(s) - plasmodium berghei , parasitemia , biology , interferon gamma , spleen , cytokine , immunology , malaria , virology , plasmodium falciparum
The mechanism of development of host resistance to blood-stage malarial infection was studied by use of an irradiation-induced attenuated variant, Plasmodium berghei XAT, obtained from a lethal strain, P. berghei NK65. The infection enhanced mRNA expression of interleukin (IL)-12 p40 and also of interferon (IFN)-gamma, IL-4, IL-10, and cytokine-inducible nitric oxide synthase (iNOS) in spleen. Treatment of these mice with anti-IL-12 or anti-IFN-gamma led to the progression of parasitemia and fatal outcome. Anti-IL-12 treatment significantly reduced the secretion and mRNA expression of IFN-gamma and greatly diminished the augmentation of iNOS mRNA expression. In addition, recombinant IL-12 administration delayed the onset of parasitemia because of the enhanced IFN-gamma production. These results suggest that blood-stage P. berghei XAT infection induces IL-12 production, which is important for the development of host resistance via IFN-gamma production.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom