Antiviral Drug Therapy of Filovirus Infections: S‐Adenosylhomocysteine Hydrolase Inhibitors Inhibit Ebola Virus In Vitro and in a Lethal Mouse Model
Author(s) -
John Huggins,
ZhenXi Zhang,
Mike Bray
Publication year - 1999
Publication title -
the journal of infectious diseases
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.69
H-Index - 252
eISSN - 1537-6613
pISSN - 0022-1899
DOI - 10.1086/514316
Subject(s) - ebola virus , in vitro , virology , antiviral drug , drug , biology , ebolavirus , antiviral therapy , virus , microbiology and biotechnology , pharmacology , biochemistry , chronic hepatitis
Ebola (subtype Zaire) viral replication was inhibited in vitro by a series of nine nucleoside analogue inhibitors of S-adenosylhomocysteine hydrolase, an important target for antiviral drug development. Adult BALB/c mice lethally infected with mouse-adapted Ebola virus die 5-7 days after infection. Treatment initiated on day 0 or 1 resulted in dose-dependent protection, with mortality completely prevented at doses > or =0.7 mg/kg every 8 h. There was significant protection (90%) when treatment was begun on day 2, at which time, the liver had an average titer of 3 x 10(5) pfu/g virus and the spleen had 2 x 10(6) pfu/g. Treatment with 2.2 mg/kg initiated on day 3, when the liver had an average titer of 2 x 10(7) pfu/g virus and the spleen had 2 x 10(8) pfu/g, resulted in 40% survival. As reported here, Carbocyclic 3-deazaadenosine is the first compound demonstrated to cure animals from this otherwise lethal Ebola virus infection.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom