RecombinantMycobacterium tuberculosisKatG(S315T) Is a Competent Catalase‐Peroxidase with Reduced Activity toward Isoniazid
Author(s) -
Nancy L. Wengenack,
James R. Uhl,
Allison L. St. Amand,
Andy J. Tomlinson,
Linda M. Benson,
Stephen Naylor,
Bruce C. Kline,
F. R. Cockerill,
Frank Rusnak
Publication year - 1997
Publication title -
the journal of infectious diseases
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.69
H-Index - 252
eISSN - 1537-6613
pISSN - 0022-1899
DOI - 10.1086/514096
Subject(s) - isoniazid , peroxidase , mycobacterium tuberculosis , chemistry , enzyme , microbiology and biotechnology , biochemistry , biology , tuberculosis , medicine , pathology
The presence of KatG(S315T), a mutation frequently detected in clinical isolates of Mycobacterium tuberculosis, has been associated with loss of catalase-peroxidase activity and resistance to isoniazid therapy. Wild-type KatG and KatG(S315T) were expressed in a heterologous host (Escherichia coli) and purified to homogeneity, and enzymatic activity was measured. The catalase activity for KatG(S315T) was reduced 6-fold, and its peroxidase activity was decreased <2-fold, compared with the activities for wild-type KatG. Pyridine hemochrome analysis demonstrated 1.1 +/- 0.1 hemes/subunit for wild-type KatG and 0.9 +/- 0.1 hemes/subunit for KatG(S315T), indicating that the difference in enzymatic activity is not the result of incomplete heme cofactor incorporation in KatG(S315T). High-performance liquid chromatography analysis showed that wild-type KatG was more efficient than KatG(S315T) at converting isoniazid to isonicotinic acid. These results demonstrate that KatG(S315T), as expressed in E. coli, is a competent catalase-peroxidase that exhibits a reduced ability to metabolize isoniazid.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom