z-logo
open-access-imgOpen Access
Mechanisms of Amino Acid Formation in Interstellar Ice Analogs
Author(s) -
Jamie E. Elsila,
Jason P. Dworkin,
Max P. Bernstein,
Mildred Martin,
Scott A. Sandford
Publication year - 2007
Publication title -
the astrophysical journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.376
H-Index - 489
eISSN - 1538-4357
pISSN - 0004-637X
DOI - 10.1086/513141
Subject(s) - amino acid , interstellar ice , glycine , serine , abiogenesis , chemistry , interstellar cloud , physics , interstellar medium , astrobiology , astrophysics , biochemistry , enzyme , galaxy
Amino acids have been identified in carbonaceous chondrites, but their origin is yet unknown. Previous work has shown that a variety of amino acids can be formed via ultraviolet photolysis of interstellar ice analogs. Two possible mechanisms of formation of these amino acids have been proposed: a Strecker-type synthesis or a radical-radical mechanism. In this work, we have used isotopic labeling techniques to test the predictions made by each of these proposed mechanisms for the formation of the amino acids glycine and serine. We observe that amino acid formation occurs via multiple pathways, with potentially different mechanisms for glycine and serine. The major reaction paths do not match either of the two predicted mechanisms, although a modified radical-radical mechanism may account for our observations. The observation of multiple routes suggests that the formation of amino acids in interstellar ice analogs is not narrowly dependent on ice composition, but may occur under a variety of conditions that influence product distributions. Subject headinggs: astrobiology — astrochemistry — ISM: molecules — molecular processes

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom