The Role of Behavioral Dynamics in Determining the Patch Distributions of Interacting Species
Author(s) -
Peter A. Abrams,
Ross Cressman,
Vlastimil Křivan
Publication year - 2007
Publication title -
the american naturalist
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.954
H-Index - 205
eISSN - 1537-5323
pISSN - 0003-0147
DOI - 10.1086/511963
Subject(s) - population , ideal free distribution , stability (learning theory) , dynamics (music) , ecology , competition (biology) , movement (music) , statistical physics , habitat , computer science , biology , physics , machine learning , demography , sociology , acoustics
The effect of the behavioral dynamics of movement on the population dynamics of interacting species in multipatch systems is studied. The behavioral dynamics of habitat choice used in a range of previous models are reviewed. There is very limited empirical evidence for distinguishing between these different models, but they differ in important ways, and many lack properties that would guarantee stability of an ideal free distribution in a single-species system. The importance of finding out more about movement dynamics in multispecies systems is shown by an analysis of the effect of movement rules on the dynamics of a particular two-species-two-patch model of competition, where the population dynamical equilibrium in the absence of movement is often not a behavioral equilibrium in the presence of adaptive movement. The population dynamics of this system are explored for several different movement rules and different parameter values, producing a variety of outcomes. Other systems of interacting species that may lack a dynamically stable distribution among patches are discussed, and it is argued that such systems are not rare. The sensitivity of community properties to individual movement behavior in this and earlier studies argues that there is a great need for empirical investigation to determine the applicability of different models of the behavioral dynamics of habitat selection.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom