Mutant Selection Window Hypothesis Updated
Author(s) -
Karl Drlica,
Xilin Zhao
Publication year - 2007
Publication title -
clinical infectious diseases
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 3.44
H-Index - 336
eISSN - 1537-6591
pISSN - 1058-4838
DOI - 10.1086/511642
Subject(s) - mutant , antimicrobial , selection (genetic algorithm) , dosing , drug , antibiotic resistance , drug resistance , antimicrobial drug , computational biology , biology , microbiology and biotechnology , pharmacology , genetics , antibiotics , computer science , machine learning , gene
The mutant selection window hypothesis postulates that, for each antimicrobial-pathogen combination, an antimicrobial concentration range exists in which selective amplification of single-step, drug-resistant mutants occurs. This hypothesis suggests an antimutant dosing strategy that is keyed to the upper boundary of the selection window: the mutant prevention concentration. Correlations are described between the mutant prevention concentration--a static parameter that is measured with agar plates--and fluctuating drug concentrations that restrict mutant amplification in vitro and in animals. When drug resistance is acquired stepwise, the mutant selection window increases, making the suppression of each successive mutant increasingly more difficult. For agents that kill drug-resistant mutants in a drug concentration-dependent manner, the use of the area under the 24-h time-drug concentration curve value divided by the value of the mutant prevention concentration is suggested as an index for designing antimutant dosing regimens. The need for such regimens is emphasized by a clinical example in which acquisition of drug resistance occurs concurrently with eradication of susceptible bacterial cells. These data support using the mutant selection window to optimize antimicrobial dosing regimens.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom