z-logo
open-access-imgOpen Access
Relativistic Solar Protons on 1989 October 22: Injection and Transport along Both Legs of a Closed Interplanetary Magnetic Loop
Author(s) -
D. Ruffolo,
P. Tooprakai,
M. Rujiwarodom,
T. Khumlumlert,
Maneenate Wechakama,
J. W. Bieber,
P. A. Evenson,
R. Pyle
Publication year - 2006
Publication title -
the astrophysical journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.376
H-Index - 489
eISSN - 1538-4357
pISSN - 0004-637X
DOI - 10.1086/499419
Subject(s) - physics , magnetic field , solar energetic particles , computational physics , solar flare , interplanetary medium , neutron monitor , interplanetary magnetic field , astrophysics , interplanetary spaceflight , neutron , solar wind , nuclear physics , coronal mass ejection , quantum mechanics
Worldwide neutron monitor observations of relativistic solar protons on 1989 October 22 have proven puzzling, with an initial spike at some stations followed by a second peak, which is difficult to understand in terms of transport along a standard Archimedean spiral magnetic field or a second injection near the Sun. Here we analyze data from polar monitors, which measure the directional distribution of solar energetic particles (mainly protons) at rigidities of 1-3 GV. This event has the unusual properties that the particle density dips after the initial spike, followed by a hump with bidirectional flows and then a very slow decay. The spectral index, determined using bare neutron counters, varies dramatically, with energy dispersion features. The density and anisotropy data are simultaneously fit by simulating the particle transport for various magnetic field configurations and determining the best-fit injection functionneartheSun.ThedataarenotwellfitforanArchimedeanspiralfield,amagneticbottleneckbeyondEarth,or particle injection along one leg of a closed magnetic loop. A model with simultaneous injection along both legs of a closed loop provides a better explanation: particles moving along the near leg make up the spike, those coming from thefarlegmakeupthehump,bothlegscontributetothebidirectional streaming,andtrappingintheloopaccountsfor the slow decay of the particle density. Refined fits indicate a very low spectral index of turbulence, q < 1, a parallel mean free path of 1.2-2.0 AU, a loop length of 4:7 0:3 AU, and escape of relativistic protons from the loop on a timescale of 3 hr. The weak scattering is consistent with reports of weak fluctuations in magnetic loops, while the low q-value may indicate a smaller correlation length as well.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom