Is There Any Evident Effect of Coronal Holes on Gradual Solar Energetic Particle Events?
Author(s) -
Chenglong Shen,
Yuming Wang,
Pinzhong Ye,
S. Wang
Publication year - 2006
Publication title -
the astrophysical journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.376
H-Index - 489
eISSN - 1538-4357
pISSN - 0004-637X
DOI - 10.1086/499199
Subject(s) - physics , coronal mass ejection , solar energetic particles , halo , astrophysics , solar wind , shock (circulatory) , astronomy , plasma , nuclear physics , galaxy , medicine
Gradual solar energetic particle (SEP) events are thought to be produced by shocks, which are usually driven by fast coronal mass ejections (CMEs). The strength and magnetic field configuration of the shock are considered the two most important factors for shock acceleration. Theoretically, both of these factors should be unfavorable for producing SEPs in or near coronal holes (CHs). Meanwhile, CMEs and CHs could impact each other. Thus, to answer the question whether CHs have real effects on theintensities of SEP events produced by CMEs, a statistical study is performed. First, a brightness gradient method is developed to determine CH boundaries. Using this method, CHs can be well identified, eliminating any personal bias. Then 56 front-side fast halo CMEs originating from the western hemisphere during 1997-2003 are investigated as well as their associated large CHs. It is found that neither CH proximity nor CH relative location manifests any evident effect on the proton peak fluxes of SEP events. The analysis reveals that almost all of the statistical results are significant at no more than one standard deviation, . Our results are consistent with the previous conclusion suggested by Kahler that SEP events can be produced in fast solar wind regions and there is no requirementfor those associated CMEs to be significantly faster.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom