The Respiratory PathogenMoraxella catarrhalisAdheres to Epithelial Cells by Interacting with Fibronectin through Ubiquitous Surface Proteins A1 and A2
Author(s) -
Thuan Tong Tan,
Therése Nordström,
Arne Forsgren,
Kristian Riesbeck
Publication year - 2005
Publication title -
the journal of infectious diseases
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.69
H-Index - 252
eISSN - 1537-6613
pISSN - 0022-1899
DOI - 10.1086/432759
Subject(s) - moraxella catarrhalis , fibronectin , microbiology and biotechnology , moraxella (branhamella) catarrhalis , recombinant dna , biology , antibody , plasma protein binding , chemistry , cell , immunology , biochemistry , gene , haemophilus influenzae , antibiotics
Moraxella catarrhalis ubiquitous surface protein (Usp) A1 has been reported to bind fibronectin and is involved in adherence. In this study, using M. catarrhalis mutants derived from clinical isolates, we show that both UspA1 and UspA2 bind fibronectin. Recombinant truncated UspA1/A2 proteins, together with smaller fragments spanning the entire molecule, were tested for binding to fibronectin. Both UspA1 and UspA2 bound fibronectin, and the fibronectin-binding domains were located within UspA1(299-452) and UspA2(165-318). These 2 truncated proteins inhibited binding of M. catarrhalis to Chang conjunctival epithelial cells to an extent similar to that by anti-human fibronectin antibodies. Our observations show that both UspA1 and UspA2 are involved in adherence to epithelial cells via cell-associated fibronectin. The biologically active sites within UspA1(299-452) and UspA2(165-318) have therefore been suggested to be potential candidates to be included in a future vaccine against M. catarrhalis.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom